Regio- and enantioselective CuH-catalyzed 1,2- and 1,4-hydrosilylation of 1,3-enynes


  • Langkopf, E. & Schinzer, D. Makes use of of silicon-containing compounds within the synthesis of natural-products. Chem. Rev. 95, 1375–1408 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Fleming, I., Barbero, A. & Walter, D. Stereochemical management in natural synthesis utilizing silicon-containing compounds. Chem. Rev. 97, 2063–2192 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franz, A. Ok. & Wilson, S. O. Organosilicon molecules with medicinal purposes. J. Med. Chem. 56, 388–405 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowe, J. T. & Panek, J. S. Synthesis and [4+2]-annulation of enantioenriched (Z)-crotylsilanes:  preparation of the C1−C13 fragment of bistramide A. Org. Lett. 7, 3231–3234 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wrona, I. E. et al. Synthesis of a 35-member stereoisomer library of bistramide a: analysis of results on actin state, cell cycle and tumor cell development. J. Org. Chem. 74, 1897–1916 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández, S., González, J., Santamaría, J. & Ballesteros, A. Propargylsilanes as reagents for synergistic gold(I)-catalyzed propargylation of carbonyl compounds: isolation and characterization of σ- gold(I) allenyl intermediates. Angew. Chem. Int. Ed. 58, 10703–10707 (2019).

    Article 

    Google Scholar
     

  • Jin, J. & Weinreb, S. M. Enantioselective whole syntheses of the 5,11-methanomorphanthridine amaryllidaceae alkaloids (-)-pancracine and (-)-coccinine. J. Am. Chem. Soc. 119, 2050–2051 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S. & Ma, S. Allenes in catalytic uneven synthesis and pure product syntheses. Angew. Chem. Int. Ed. 51, 3074–3112 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kusumoto, T. & Hiyama, T. Hydrosilylation of 1,4-bis(trimethylsilyl)-1,3-butadiyne. Chem. Lett. 14, 1405–1408 (1985).

    Article 

    Google Scholar
     

  • Todo, H., Terao, J., Watanabe, H., Kuniyasu, H. & Kambe, N. Cu-catalyzed regioselective carbomagnesiation of dienes and enynes with sec– and tert-alkyl grignard reagents. Chem. Commun. 11, 1332–1334 (2008).

  • Ohmiya, H., Ito, H. & Sawamura, M. Normal and useful group-tolerable strategy to allenylsilanes by rhodium-catalyzed coupling between propargylic carbonates and a silylboronate. Org. Lett. 11, 5618–5620 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, T., Makino, H., Nagaosa, M. & Hayashi, T. Rhodium-catalyzed enantioselective 1,6-addition of arylboronic acids to enynamides: uneven synthesis of axially chiral allenylsilanes. J. Am. Chem. Soc. 132, 12865–12867 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyas, D. J., Hazra, C. Ok. & Oestreich, M. Copper(I)-catalyzed regioselective propargylic substitution involving Si–B bond activation. Org. Lett. 13, 4462–4465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hazra, C. Ok. & Oestreich, M. Copper(I)-catalyzed regio- and chemoselective single and double addition of nucleophilic silicon to propargylic chlorides and phosphates. Org. Lett. 14, 4010–4013 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Synthesis of extremely substituted racemic and enantioenriched allenylsilanes by way of copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates with silylboronate. J. Am. Chem. Soc. 137, 14830–14833 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z.-L. et al. Copper-catalyzed uneven silylation of propargyl dichlorides: entry to enantioenriched functionalized allenylsilanes. Angew. Chem. Int. Ed. 58, 16538–16542 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Ok., Zeng, Q., Villar-Yanez, A., Bo, C. & Kleij, A. W. Ni-catalyzed decarboxylative silylation of alkynyl carbonates: entry to chiral allenes by way of enantiospecific conversions. Org. Lett. 24, 637–641 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F.-H., Guo, X., Zeng, X. & Wang, Z. Catalytic enantioconvergent allenylation of aldehydes with propargyl halides. Angew. Chem. Int. Ed. 61, e202117114 (2022).

    CAS 

    Google Scholar
     

  • Hayashi, T., Konishi, M., Okamoto, Y., Kabeta, Ok. & Kumada, M. Uneven-synthesis catalyzed by chiral ferrocenylphosphine transition-metal complexes .3. preparation of optically-active allylsilanes by palladium-catalyzed uneven grignard cross-coupling. J. Org. Chem. 51, 3772–3781 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Makioka, Y. et al. Technology of allenic samarium complexes from propargylic ethers and (C5Me5)2Sm(THF)2, and their electrophilic trapping. Tetrahedron Lett. 36, 6283–6286 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Reich, H. J., Holladay, J. E., Walker, T. G. & Thompson, J. L. Resolution construction and stereochemistry of alkyl- and silyl-substituted allenyl-propargyllithium reagents. J. Am. Chem. Soc. 121, 9769–9780 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. & Prepared, J. M. Cyclocondensation of amino-propargyl silanes. Org. Lett. 14, 2308–2311 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J., Gao, S. & Chen, M. Cu-catalyzed silylation and borylation of vinylidene cyclopropanes. Org. Lett. 21, 8800–8804 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, W. B. & Oestreich, M. Enantioselective synthesis of α-chiral propargylic silanes by copper-catalyzed 1,4-selective addition of silicon nucleophiles to enyne-typeα,β,γ,δ–unsaturated acceptors. Org. Lett. 22, 8096–8100 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. L., Ouyang, J., Zou, H. N., Zhu, S. F. & Zhou, Q. L. Enantioselective insertion of alkynyl carbenes into Si-H bonds: an environment friendly entry to chiral propargylsilanes and allenylsilanes. J. Am. Chem. Soc. 143, 6401–6406 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T., Zheng, S., Kobayashi, T. & Maekawa, H. Regioselective silylations of propargyl and allyl pivalates by way of Ca-promoted reductive C(sp3)–O bond cleavage. Org. Lett. 23, 7129–7133 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayeh-Romero, L. & Buchwald, S. L. Copper hydride catalyzed enantioselective synthesis of axially chiral 1,3-disubstituted allenes. J. Am. Chem. Soc. 141, 13788–13794 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dherbassy, Q. et al. Copper-catalyzed functionalization of enynes. Chem. Sci. 11, 11380–11393 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, L., Greßies, S., Chen, P. & Liu, G. Latest advances and views in transition metal-catalyzed 1,4-functionalizations of unactivated 1,3-enynes for the synthesis of allenes. Chin. J. Chem. 38, 91–100 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. & Huang, Z. Advances in base-metal-catalyzed alkene hydrosilylation. ACS Catal. 7, 1227–1243 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gribble, M. W., Pirnot, M. T., Bandar, J. S., Liu, R. Y. & Buchwald, S. L. Uneven copper hydride-catalyzed markovnikov hydrosilylation of vinylarenes and vinyl heterocycles. J. Am. Chem. Soc. 139, 2192–2195 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metallic catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2, 15–34 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Copper-catalyzed non-directed hydrosilylation of cyclopropenes: extremely diastereoselective synthesis of absolutely substituted cyclopropylsilanes. Chem. Commun. 56, 1819–1822 (2020).

    Article 
    CAS 

    Google Scholar
     

  • You, S.-L., Xu-Xu, Q.-F., Yang, P. & Zhang, X. Enantioselective synthesis of 4-silyl-1,2,3,4-tetrahydroquinolines by way of copper(I) hydride catalyzed uneven hydrosilylation of 1,2-dihydroquinolines. Synlett 32, 505–510 (2020).


    Google Scholar
     

  • Trost, B. M. & Ball, Z. T. Addition of metalloid hydrides to alkynes: hydrometallation with boron, silicon, and tin. Synthesis 6, 853–887 (2005).

    Article 

    Google Scholar
     

  • Chen, J., Guo, J. & Lu, Z. Latest advances in hydrometallation of alkenes and alkynes by way of the primary row transition metallic catalysis. Chin. J. Chem. 36, 1075–1109 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nishino, S., Hirano, Ok. & Miura, M. Cu-catalyzed reductive gem-difunctionalization of terminal alkynes by way of hydrosilylation/hydroamination cascade: concise synthesis of α-aminosilanes. Chem. Eur. J. 26, 8725–8728 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-L. et al. Copper-catalyzed anti-markovnikov hydrosilylation of terminal alkynes. Org. Lett. 22, 7735–7742 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Almeida, L. D., Wang, H., Junge, Ok., Cui, X. & Beller, M. Latest advances in catalytic hydrosilylations: developments past conventional platinum catalysts. Angew. Chem. Int. Ed. 60, 550–565 (2021).

    Article 

    Google Scholar
     

  • Zhu, S.-F., He, P., Hu, M.-Y. & Zhang, X.-Y. Transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Synthesis 54, 49–66 (2021).

    Article 

    Google Scholar
     

  • Wu, J. Y., Stanzl, B. N. & Ritter, T. A technique for the synthesis of well-defined iron catalysts and utility to regioselective diene hydrosilylation. J. Am. Chem. Soc. 132, 13214–13216 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raya, B., Jing, S., Balasanthiran, V. & RajanBabu, T. V. Management of selectivity by way of synergy between catalysts, silanes, and response circumstances in cobalt-catalyzed hydrosilylation of dienes and terminal alkenes. ACS Catal. 7, 2275–2283 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, M.-Y. et al. Ligands with 1,10-phenanthroline scaffold for extremely regioselective iron-catalyzed alkene hydrosilylation. Nat. Commun. 9, 221–231 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang, H. L., Yu, S. & Ge, S. Cobalt-Catalyzed Regioselective stereoconvergent markovnikov 1,2-hydrosilylation of conjugated dienes. Chem. Sci. 9, 973–978 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, H., Wang, Ok., Zhang, Y., Liu, G. & Huang, Z. Cobalt-catalyzed regio- and enantioselective markovnikov 1,2-hydrosilylation of conjugated dienes. ACS Catal. 9, 1612–1618 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z.-L. et al. Synthesis of structurally various allylsilanes by way of copper-catalyzed regiodivergent hydrosilylation of 1,3-dienes. Org. Lett. 23, 4736–4742 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, W. et al. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chem. Sci. 13, 2721–2728 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Wang, Z.-L., Ma, W.-W. & Xu, Y.-H. Copper-catalyzed markovnikov selective 3,4-hydrosilylation of 2-substituted 1,3-dienes. Org. Lett. 24, 4081–4086 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Lu, W., Zhang, J., Chong, Q. & Meng, F. Cobalt-catalyzed regio-, diastereo- and enantioselective intermolecular hydrosilylation of 1,3-dienes with prochiral silanes. Angew. Chem. Int. Ed. 61, e202205624 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kuai, C.-S. et al. Ligand-regulated regiodivergent hydrosilylation of isoprene below iron catalysis. Angew. Chem. Int. Ed. 59, 19115–19120 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maruyama, Y., Yoshiuchi, Ok., Ozawa, F. & Wakatsuki, Y. Regio- and stereoselective hydrosilylation of 1,4-bis(trimethylsilyl)-3-buten-1-ynes. Chem. Lett. 26, 623–624 (1997).

    Article 

    Google Scholar
     

  • Bergueiro, J., Montenegro, J., Cambeiro, F., Saa, C. & Lopez, S. Cross-coupling reactions of organosilicon compounds within the stereocontrolled synthesis of retinoids. Chem. Eur. J. 18, 4401–4410 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. & Moberg, C. Regio- and stereoselective hydrosilylation of 1,3-enynes catalyzed by palladium. Org. Lett. 15, 1444–1447 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury, P. P., Junker, C. S., Pidaparthi, R. R. & Welker, M. E. Syntheses of 2-silicon-substituted 1,3-dienes. J. Organomet. Chem. 754, 88–93 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Z., Wen, H., Liu, G. & Huang, Z. Iron-catalyzed regio- and stereoselective hydrosilylation of 1,3-enynes to entry 1,3-dienylsilanes. Org. Lett. 23, 2375–2379 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, D., Hu, B., Yang, M., Xia, H. & Chen, D. Cobalt-catalyzed (E)-selective hydrosilylation of 1,3-enynes for the synthesis of 1,3-dienylsilanes. Organometallics 40, 2070–2080 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, W., Zhao, Y. & Meng, F. Cobalt-catalyzed sequential site- and stereoselective hydrosilylation of 1,3- and 1,4-enynes. J. Am. Chem. Soc. 144, 5233–5240 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kusumoto, T., Ando, Ok. & Hiyama, T. Hydrosilylation of 1,4-bis(trimethylsilyl)butadiyne and silyl-substituted butenynes. Bull. Chem. Soc. Jpn. 65, 1280–1290 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Tillack, A., Michalik, D., Koy, C. & Michalik, M. Catalytic uneven hydrosilylation of butadiynes: a brand new synthesis of optically energetic allenes. Tetrahedron Lett. 40, 6567–6568 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Han, J. W., Tokunaga, N. & Hayashi, T. Palladium-catalyzed uneven hydrosilylation of 4-substituted 1-buten-3-ynes. catalytic uneven synthesis of axially chiral allenylsilanes. J. Am. Chem. Soc. 123, 12915–12916 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogasawara, M., Ito, A., Yoshida, Ok. & Hayashi, T. Synthesis of two,5-bis(binaphthyl)phospholes and phosphametallocene derivatives and their utility in palladium-catalyzed uneven hydrosilylation. Organometallics 25, 2715–2718 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Uncommon-earth-catalyzed selective 1,4-hydrosilylation of branched 1,3-enynes giving tetrasubstituted silylallenes. J. Am. Chem. Soc. 143, 12913–12918 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J.-L. et al. Copper-catalyzed regiodivergent and enantioselective hydrosilylation of allenes. J. Am. Chem. Soc. 144, 5535–5542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Xu, J.-L. & Xu, Y.-H. Copper-catalyzed enantioselective hydrosilylation of allenes to entry axially chiral (cyclohexylidene)ethyl silanes. Org. Lett. 24, 6054–6059 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., He, X., Jin, Y., Lan, Y. & Shen, X. Copper-catalyzed regio- and stereo-selective hydrosilylation of terminal allenes to entry (E)-allylsilanes. Nat. Commun. 13, 3691–3698 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nájera, C., Beletskaya, I. P. & Yus, M. Steel-catalyzed regiodivergent natural reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Su, W. et al. Ligand-controlled regiodivergent copper-catalyzed alkylboration of alkenes. Angew. Chem. Int. Ed. 54, 12957–12961 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bochat, A. J., Shoba, V. M. & Takacs, J. M. Ligand-controlled regiodivergent enantioselective rhodium-catalyzed alkene hydroboration. Angew. Chem. Int. Ed. 58, 9434–9438 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ji, D.-W. et al. A Regioselectivity swap in Pd-catalyzed hydroallylation of alkynes. Chem. Sci. 10, 6311–6315 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, Y., Kim, S.-T., Jeong, J., Baik, M.-H. & Buchwald, S. L. CuH-catalyzed enantioselective alkylation of indole derivatives with ligand-controlled regiodivergence. J. Am. Chem. Soc. 141, 3901–3909 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Z. et al. Regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroboration of arylacetylenes. Angew. Chem. Int. Ed. 60, 22454–22460 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J.-W. et al. Nickel-catalyzed switchable site-selective alkene hydroalkylation by temperature regulation. Angew. Chem. Int. Ed. 61, e202205537 (2022).

    CAS 

    Google Scholar
     

  • Hu, M.-Y., Lian, J., Solar, W., Qiao, T.-Z. & Zhu, S.-F. Iron-catalyzed dihydrosilylation of alkynes: environment friendly entry to geminal bis(silanes). J. Am. Chem. Soc. 141, 4579–4583 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Teo, W. J. & Ge, S. Cobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivities. ACS Catal. 7, 855–863 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B. et al. Hydromagnesiation of 1,3-enynes by magnesium hydride for synthesis of tri- and tetra-substituted allenes. Angew. Chem. Int. Ed. 60, 217–221 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y., del Pozo, J., Torker, S. & Hoveyda, A. H. Enantioselective synthesis of trisubstituted allenyl–B(pin) compounds by phosphine–Cu-catalyzed 1,3-enyne hydroboration. insights concerning stereochemical integrity of Cu–allenyl intermediates. J. Am. Chem. Soc. 140, 2643–2655 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Perry, Ian,B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed uneven addition of olefin-derived nucleophiles to ketones. Science 353, 144–150 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bickelhaupt, F. M. & Houk, Ok. N. Analyzing response charges with the distortion/interaction-activation pressure mannequin. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, Q. Interplay area indicator (IRI): a easy actual area operate clearly revealing each chemical bonds and weak interactions. Chem. Strategies 1, 231–239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Neese, F. “The ORCA program system”. Wiley Interdiscip. Rev. —Comput. Mol. Sci. 2, 73–78 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Neese, F. “Software program replace: The ORCA program system—Model 5.0”. Wiley Interdiscip. Rev. —Comput. Mol. Sci. 12, e1606 (2022).

    Article 

    Google Scholar
     

  • Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Pure triple excitations in native coupled cluster calculations with pair pure orbitals. J. Chem. Phys. 139, 134101 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Latest articles

    spot_imgspot_img

    Related articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    spot_imgspot_img